Call for Contributions

Over the last decade big data and data mining has received growing interest and importance in game production to process and draw actionable insights from large volumes of player-related data in order to inform game design, to ensure customer satisfaction, to maximize revenues, and to drive technical innovation.

This volume seeks to provide a comprehensive overview of data mining applications pertaining to all aspects of gaming and entertainment. It isĀ  intended to serve as a reference volume for academics and practitioners alike. The book will be structured along four main themes, covering different aspects of data mining in games. Possible topics of interest for each of the themes are listed below. This list is meant to be suggestive, not exhaustive. If you have any interesting suggestion for an interesting chapter not covered hereĀ here please get in touch.

Themes and Topics of Interest

mine.png
Introductory chapters to game data mining

Introductory chapters aimed at explaining common techniques used in the context of game data mining and data-driven game development. For example, overview chapters explaining data mining techniques such as clustering methods or pattern mining and their application in the gaming domain.

game-controller.png
Data mining for games user research

Contributions pertaining to issues related to games analytics and directed towards understanding player behavior and informing games user research. Topics of interest include, among others, player profiling and modeling, behavioral analysis, understanding player communities and social structures, churn prediction and retention analysis, balancing of in-game economies, or monetization.

game-console.png
Data mining for game technology

Contributions concerning technical aspects of game development which make use of large-scale datasets such as data-driven approaches to game AI, dynamic difficulty adjustment, and procedural content or level generation.

bar-chart.png
Visualization of large-scale game data

Contributions dealing with the visualization of in-game data for the purpose of exploration, analysis, knowledge discovery, and communication. This includes, but is not limited to spatio-temporal visualization approaches, multi-modal data visualization, visual analytics tools, and time-based visualizations.

Contribution Formats

Research articles covering all aspects of data mining in gaming or entertainment. Such chapters may describe novel approaches, methods, or research findings. Chapters reviewing common techniques or discussing the state-of-the-art in game data mining are also within the scope of the book.

Case studies describing the application of data-mining technique in practical settings. We especially welcome case studies from industry experts. Case studies may cover one or multiple themes. For example, case studies may describe best practices or lessons learned, e.g., by highlighting what went right and wrong in data-driven game development (such as, for example, Gamasutra style post-mortems).

Proposal Submission

Proposals should not exceed 600 words and should include a tentative title, a short description/outline of the chapter, author names, affiliations and a brief biography. Submission should be previously unpublished and should not be under consideration for publication elsewhere. Please send your proposals via e-mail to guenter.wallner@uni-ak.ac.at. Deadline for submission of chapter proposals is August 30th 2017 (extended) although early submissions are encouraged.

The final chapter should be around 20-25 double-spaced pages (incl. figures and tables). Templates for formatting the chapter itself will be provided in due time.

Proposals will be used to evaluate if the proposed chapter fits the topic of the book. All accepted chapters will then undergo a double-blind review process. For additional inquiries and advice on the potential suitability of any proposed chapter please contact the editor.

Adobe_PDF_file_icon_32x32 Download a PDF version of the call for contributions.

 

Image Credits:
Icon made by Madebyoliver from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Madebyoliver from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Pixel perfect from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Maxim Basinski from www.flaticon.com is licensed by CC 3.0 BY

 

Advertisements